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Abstract:  We present a model that determines both monetary policy and international reserves. To that end we introduce a reserves constraint into a standard monetary model. Myopic central bank might raise its current interest rate in order to satisfy the constraint. However, optimizing, forward looking bank would probably raise interest rate more. This strict monetary policy today would build precautionary reserves that serve two purposes: allow future monetary policy to better stabilize inflation and output and lower the likelihood of forthcoming financial crisis. 
JEL Classification code: E58, F33

Keywords:  international reserves, drift control   
*Corresponding author. bar-ilan@econ.haifa.ac.il, fax: 972-4-8240059, phone: 972-4-8240021
1. Introduction

A major line of research that attempts to explain the amount of international reserves held by a central bank (CB) is the buffer stock model.
 Another model that was developed recently to explain the level of reserves is the drift control model.
 According to both models, the objective of the CB is to minimize the cost associated with holding and managing reserves. Other objectives that the CB might have are not explicitly modeled. 

In this paper we analyze foreign reserves within the context of a standard dynamic monetary model. The CB uses monetary policy to stabilize inflation and output, its standard goals. However, the bank is also aware of the effect that monetary policy might have on the accumulation or depletion of reserves. The outcome is joint determination of monetary policy and level of foreign reserves.
We introduce a constraint on the minimum amount of reserves and allow reserves to be positively correlated with interest rates. A myopic CB sets the interest rate at the optimal, unconstrained rate that ignores the reserves constraint, if this rate satisfies the constraint; otherwise, it sets the interest rate at the minimum level that satisfies the constraint. Forward-looking CB, however, sets higher interest rate than the myopic bank, and correspondingly accumulates more reserves. On one hand, this strict monetary policy is costly in terms of contemporaneous stabilization. On the other hand, the additional precautionary reserves allow future monetary policy to be less costly and better stabilizer. Moreover, these additional reserves reduce the probability of a future financial crisis when the level of reserves will be insufficient. 
The structure of the paper is as follows. Section 2 presents the model, while the analytic solution is outlined in section 3. Section 4 presents the numerical solution, while section 5 concludes.
2. The Model

We adopt here the basic monetary model of Clarida et al. (1999), augmented by an international reserves constraint as introduced by Romer (2002). The CB maximizes the following two-period objective function
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The variable 
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 denotes the deviation of output from potential level and 
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 is the inflation rate, both in period t.  The discount rate is denoted by
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, 
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 denotes expectations as of period t, and 
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 is a parameter that measures the loss of output relative to inflation.  The economy is characterized by the following two equations
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Equation (2) is an “IS” curve that relates the output gap inversely to the real interest rate, where 
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 is the nominal interest rate and 
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 is positive parameter.  Equation (3) is a Phillips curve that relates inflation positively to output and expected inflation. The output and inflation shocks, 
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 and 
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 respectively, are both white noise error terms.
A standard monetary model is composed of maximizing the objective function (1) subject to the two constraints, (2) and (3). We introduce international reserves, 
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, into this model. Reserves cannot fall below a certain lower bound, denoted by B, 
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The dynamics of reserves is,
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The drift term, 
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, increases with the interest rate, as in Romer (2002),
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The parameters  
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 and 
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 are positive, and 
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 is white noise term that reflects shocks to the current account or the capital account.  
3. Analytic Solution
The CB chooses nominal interest rate in order to maximize the objective function (1) subject to the constraints (2)-(6).  We solve this problem recursively.
Period 2
Period 2 is the terminal period, when intertemporal considerations do not play a role. Ignoring the foreign reserves constraint (4), the solution is the discretionary solution presented in Clarida et al. (1999), 
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Note that the interest rate is determined after the realization of the shocks. The output shock 
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 is fully offset by the monetary policy, where the CB leans against the wind of the inflation shock and optimally splits it between the inflation and output terms.
 
We denote the solution (7)-(9) the unconstrained solution. We now take into account the reserves constraint. The minimum level of interest rate that satisfies the reserves constraint, 
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We denote 
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  as the constrained interest rate. The optimal interest rate 
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 is the unconstrained level (7) if this level satisfies the reserves constraint; that is, at least as large as the constrained level (10). The interest rate 
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 is therefore

(11)              
[image: image35.wmf]*

2

222

max,

gq

iui

l

jj

ìü

=+

íý

îþ

.  
The interest rate takes the constrained level when the three shocks satisfy the following inequality
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Note that the lower the reserves level 
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 at the end of period 1 (start of period 2), the higher the probability that the interest rate will be constrained. 
The constrained monetary policy is costly relative to the unconstrained one. This cost is composed of two terms. First, output and inflation are not at their optimal, unconstrained level. Second, we assume that there is a fixed cost C whenever the monetary policy is constrained and the reserves constraint is binding. This cost captures a financial crisis when the level of foreign reserves is insufficient and the CB must alter its monetary policy accordingly. The expected cost of the latter term, expectations taken at the end of period 1, is
(13)             
[image: image38.wmf]2221

Pr[ ]

q

CugvBR

qlq

y

jj

×++£--

,
where Pr denotes probability.

In order to evaluate the first term of the cost, notice from equations (2) and (3) that when the interest rate changes by an increment
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where 
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 is the expected value of the change in 
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 that takes place because of the change of  
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by 
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.  Using second order Taylor approximation, the welfare cost of changing the nominal rate by
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 relative to the unconstrained level is,
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Since t=2 is the terminal condition, we get
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The expected increase in the loss in period 2 because of the deviation of output and inflation from their unconstrained levels,
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The integral is over the values of 
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 that satisfy the inequality (12), and
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, is the increase in the interest rate because of the reserves constraint. That is,
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The total additional expected cost of the constrained monetary policy relative to the unconstrained policy is the sum of equations (13) and (20). Both terms fall with the level of reserves
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Period 1
Period 1 starts with an exogenous, given level of Reserves
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. Then the shocks 
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 are realized and a decision about the interest rate 
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 takes place. The interesting tradeoff is as follows. The CB might want to raise the interest rate 
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 in order to increase the reserves level
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 and to reduce the expected loss in the second period due to insufficient reserves, financial crisis and constrained monetary policy (equations (13) and (20)). On the other hand, raising 
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and this might be costly as well.
If for period t=1 the CB does not consider the intertemporal considerations explained above, then the solution is similar to period-2 solution. However, this solution that was optimal for the terminal period is now suboptimal and myopic. This myopic interest rate, similar to equations (10) and (11), is
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Plugging these values into (16) yields
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The CB chooses the interest rate 
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 that minimizes the expected NPV of the welfare loss given by equations (13), (20), and (26).

4. Numerical Solution
To reiterate, the optimization problem to be solved is,

(27)
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where the integral is over values that satisfy inequality (12), and 
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 is the increase in interest rate above the myopic value in order to reduce the probability of a future financial crisis.

The numerical solution is solved as follows. Given certain initial reserves
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 and realization of first period shocks, we draw randomly 100,000 values of second period shocks
[image: image80.wmf]222

(,,)

guv

. The shocks are drawn from jointly normal density function with zero mean, variances
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, and zero cross correlations. The optimal 
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 minimizes the function (27). 

We start by looking at the interest rate as a function of the initial reserves
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. Figure 1 shows the interest rate 
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, the myopic interest rate 
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, and the difference between the two rates, 
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.   The level of reserves 
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 accumulated as a result of the chosen interest rate is presented in Figure 2. The CB optimally increases the interest rate above the myopic level in order to accumulate reserves as a precaution against future financial crisis. Although this is especially pronounced for low levels of initial reserves, only when the initial reserves are close to double the required level then the myopic and optimal interest rates coincide. Although a CB that ignores intertemporal considerations will raise the reserves only up to the required level B=5, the minimum level of reserves held in figure 2 is over 40% higher. The precautionary reserves =
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 are also depicted in figure 2.  These reserves, together with 
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 as the myopic interest rate builds reserves up to B. When 
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We turn now to the effect of the parameter C, the cost of a financial crisis, on monetary policy.  Figure 3 shows how the interest rate depends on C, while figure 4 presents a similar graph for foreign reserves 
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 and C. As expected, the larger is C the higher are both the optimal interest rate and the resulting reserves level that reduces the probability of a future crisis. The interesting observation from these figures is that the optimal interest rate is above the myopic level and reserves are above the required level even when C=0. The myopic CB wishes to smooth output and inflation in the first period only and thus sets
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. However, a forward-looking bank, even if a future financial crisis is not an issue, wishes to hold additional reserves in order to smooth future output and inflation. This allows us to break in figure 4 the precautionary reserves to smoothing reserves (precautionary reserves when C=0), and net precautionary reserves (precautionary minus smoothing reserves). 
We study also the effect of the parameter 
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 on the interest rate 
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and the level of reserves
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. The parameter
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, defined in equation (1), measures the welfare cost of output relative to inflation deviations.  Small levels of 
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 indicate CBs that are concerned about inflation stabilization rather than output stabilization. In the terminology of the literature, this defines independent CB. We find that monetary policy conducted by independent banks is stricter than the policy run by "soft" banks. This is reflected in higher interest rates and levels of foreign reserves, as demonstrated in Figure 5. 

 5. Conclusion
This paper introduces a foreign reserves constraint into a standard macroeconomic model. The positive correlation between reserves inflow and interest rate forces the CB to have a minimal interest rate that supports a threshold level of reserves.

However, even when the CB has currently sufficient reserves it would optimally choose a higher interest rate than the myopic interest rate that ignores or just meets the reserves constraint. This strict monetary policy today increases the level of reserves and serves as a precaution against adverse circumstances that might take place in the future. The additional reserves assist in future monetary stabilization and lower the chance of a financial crisis. Our numerical solution demonstrates that these precautionary reserves could be quantitatively significant. Our model contributes therefore to the understanding of why CBs, in particular those which are more vulnerable to a financial crisis, accumulate large amounts of foreign reserves.
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� Examples are Edwards (1985) and Aizenman and Marion (2004).
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